Consistency of Nonlinear Regression Quantiles under Type I Censoring, Weak Dependence and General Covariate Design
نویسندگان
چکیده
For both deterministic or stochastic regressors, as well as parametric nonlinear or linear regression functions, we prove the weak consistency of the coefficient estimators for the Type I censored quantile regression model under different censoring mechanisms with censoring points depending on the observation index (in a nonstochastic manner) and a weakly dependent error process. Our argumentation is based on an exposition of the connection between the residuals of the economically relevant model at the outset of the censored regression problem, and the residuals which are subject to the corresponding optimization process of censored quantile regression. Kurzfassung: In dieser Arbeit wird die schwache Konsistenz der Koeffizientenschätzer für das zensierte (Typ I) Quantilsregressionsmodell unter sehr allgemeinen Bedingungen – lineare und nichtlineare Regressionsfunktionen, deterministische und stochastische Regressoren, Zensierungsgrenzen die (in nichtstochastischer Weise) vom Beobachtungsindex abhängen sowie schwach abhängige Fehlerterme – bewiesen. Die Argumentation basiert dabei auf dem Zusammenhang zwischen den ökonomischen relevanten Residuen des Ausgangsmodells und den Residuen die Gegenstand der Zielfunktion des Optimierungskalküls der zensierten Quantilsregression sind. JEL classification: C22, C24.
منابع مشابه
Asymptotic Theory for Nonlinear Quantile Regression under Weak Dependence
This paper studies the asymptotic properties of the nonlinear quantile regression model under general assumptions on the error process, which is allowed to be heterogeneous and mixing. We derive the consistency and asymptotic normality of regression quantiles under mild assumptions. First-order asymptotic theory is completed by a discussion of consistent covariance estimation.
متن کاملQuantile regression analysis of censored longitudinal data with irregular outcome-dependent follow-up.
In many observational longitudinal studies, the outcome of interest presents a skewed distribution, is subject to censoring due to detection limit or other reasons, and is observed at irregular times that may follow a outcome-dependent pattern. In this work, we consider quantile regression modeling of such longitudinal data, because quantile regression is generally robust in handling skewed and...
متن کاملAnalysis of Dependently Censored Data Based on Quantile Regression.
Dependent censoring occurs in many biomedical studies and poses considerable methodological challenges for survival analysis. In this work, we develop a new approach for analyzing dependently censored data by adopting quantile regression models. We formulate covariate effects on the quantiles of the marginal distribution of the event time of interest. Such a modeling strategy can accommodate a ...
متن کاملQuantile Regression for Doubly Censored Data with Applications to Cystic Fibrosis Studies
Quantile regression is known for its flexibility to accommodate varying covariate effects and has attracted growing interest in its application to survival analysis. Motivated by Peng and Huang (2008)’s work on quantile regression method with randomly right censored data, we develop a quantile regression method tailored for a double censoring setting that is often encountered in registry studie...
متن کاملLeast squares estimation of nonlinear spatial trends
The goal of this work is to study the asymptotic and finite sample properties of an estimator of a nonlinear regression function when errors are spatially correlated, and when the spatial dependence structure is unknown. The proposed method is based on a weighted nonlinear least squares approach, taking into account the spatial covariance. Weak consistency of the regression parameters estimator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005